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Abstract

Thermoacoustic oscillations at a cycle-steady state in a tube with an isothermal outer wall, and with one end closed

and the other end connected to a wave generator, is analyzed based on a linearized theory. From the global mass con-

servation, an analytical solution has been obtained for the cross-sectional and cycle averaged axial velocity. It is shown

that this averaged velocity is non-vanishing due to the mass streaming effect. By analyzing the global momentum bal-

ance, it is found that the cycle-averaged pressure depends on the momentum streaming and friction force, and a con-

servation relationship exists between the momentum streaming and the cycle-averaged pressure for the flow oscillating

at a high frequency in a wide tube. An investigation of the global energy balance leads to an expression for thermo-

acoustic energy streaming. Furthermore, it is shown that the refrigeration effect is mainly caused by the non-vanishing

mean velocity, and therefore the mass streaming and the energy streaming are intimately connected.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Pulse-tube refrigerators and thermoacoustic refriger-

ators are two kinds of refrigerators that share a similar

refrigeration mechanism [1–3]. Based on a thermody-

namic analysis, Gifford and Longsworth [4] attributed

the refrigeration phenomenon to the ‘‘surface heating

pumping’’ effect. However, in order to understand the

refrigeration mechanism of a compressible oscillating

flow quantatively, it is necessary to solve the governing

nonlinear partial differential equations of a compressible
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oscillating viscous flow. To simplify the mathematical

analysis, a linearized theory of thermoacoustic oscilla-

tion has been developed by Rott [5–7], Merkli and

Thomann [8], Wheatley et al. [9], Swift [2,10] among

others. In addition, Xiao [11], Santillan and Boullosa

[12], Lu and Cheng [13], as well as Tominaga [14] have

applied the linearized theory to study some aspects of

thermoacoustic oscillation.

Recently, theoretical research on thermoacoustic

streaming has attracted a great deal of attention since

the performance of a thermoacoustic machine depends

greatly on these phenomena. For example, Gopinath

and Tait [15] evaluated the time-averaged temperature

distribution which is the result of the energy streaming

in a resonant channel. Waxler [16] and Bailliet et al.
ed.

mailto:pingcheng@sjtu.edu.cn 


1600 G.Q. Lu, P. Cheng / International Journal of Heat and Mass Transfer 48 (2005) 1599–1607
[17] analyzed the mass streaming and momentum

streaming by solving for the second-order physical

quantities. However, discussions on the relationship be-

tween the mass streaming and the energy streaming,

which is useful to understand the complex transport

phenomena in thermoacoustic oscillation, have not been

adequately discussed in previous work.

In this paper, we will analyze a simple case of a ther-

moacoustic oscillatory flow in a tube with one end

closed and with outer surface at isothermal condition

when the flow reaches a cycle-steady state. As in the pre-

vious work [5–10], the physical quantities are expanded

in terms of a power series for small Mach numbers in

the present paper. The first-order physical quantities

are first solved based on the linearized equations. The

cycle averaged and cross-sectional averaged axial veloc-

ity are obtained from the global mass conservation un-

der the cycle-steady condition. Axial distribution of

the cycle-averaged pressure is determined from the glo-

bal momentum conservation. Local heat transfer rate

along outer wall of the tube is determined analytically

by analyzing the thermoacoustic energy streaming. It is

shown that refrigeration effect is mainly caused by the

non-vanishing mean velocity, and therefore the mass

streaming and the energy streaming are connected inti-

mately. The results given in this study are useful to

understand the refrigeration mechanism in a thermo-

acoustic refrigerator and a basic pulse-tube refrigerator.
2. Assumptions and simplified governing equations

Consider thermoacoustic oscillation in a tube with

length L, outer radius Ro and inner radius Ri as shown

in Fig. 1. One end (X = 0) of this tube is driven by a pres-

sure generator (such as a piston) while the other end

(X = L) is closed. The outer surface of this tube is iso-

thermal. The piston is oscillating with an amplitude of

the axial velocity ud and a frequency x.

We assume that the thermoacoustic oscillation in this

tube has reached a cycle-steady state where the oscilla-

tion is stable. In particular, we assume that the local heat

transfer between the outer isothermal wall of the tube

and its surrounding environment matches with the local

heat transfer rate of the fluid at the inner wall so that the

oscillation is maintained at a cycle-steady state. The

value of this local heat transfer rate between the outer
x=0 x=1

x

r

Fig. 1. Schematic diagram of a tube.
wall and its surroundings is determined analytically in

this paper, which can be used to explain the refrigeration

mechanism occurring in a thermoacoustic machines.

Furthermore, we assume that (1) the oscillation oc-

curs in a sufficiently long tube, (2) the driven oscillating

frequency is high (i.e., near a resonant condition, but

avoiding a shock wave occurring), and (3) the oscillatory

amplitude of the velocity is small at the driven end, i.e.

Ri

L
� 1;

xL
a

/ 1; M ¼ ud
a
� 1 ð1a–cÞ

where M is Mach number, and a ¼
ffiffiffiffiffiffiffiffiffiffiffi
cRT 0

p
is sound

speed with R being the gas constant and c the ratio of

specific heats. T0 and p0 are reference temperature and

pressure, which are defined as the volume-averaged

and cycle-averaged temperature and pressure in the sys-

tem at a cycle-steady state, respectively, and therefore

are independent of spatial and temporal coordinates.

The governing equations for the oscillating flow in an

axisymmetric cylindrical coordinate can be normalized

by scaling temperature by T0, pressure by p0, density

by q0 = p0/(RT0), axial velocity by sound speed a, radial

velocity by aRi/L, axial coordinate by L, radial coordi-

nate by Ri and time coordinate by 1/x. The normalized

governing equations for a compressible flow in an axi-

symmetric coordinate are:
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p ¼ qT ð7Þ

Eqs. (2)–(7) are the continuity equation, Navier-Stokes

equations, energy equations for the fluid and the solid

phase (i.e., the wall) as well as the state equation, respec-

tively. In these equations, the coefficients l, Cp and k

denote the viscosity, specific heat and thermal conduc-

tivity, respectively. The subscript ‘‘s’’ denotes the quan-

tity associated with solid phase (or the wall). According

to the long tube assumption given in Eq. (1a), viscous ef-

fect due to the axial gradient indicated by the last braces

term in the in Eq. (3) can be neglected. Similarly, heat

conduction due to the axial temperature gradients in

Eqs. (5) and (6) and the dissipation terms in Eq. (5)

can also be neglected. Furthermore, radial momentum

equation can be neglected, thus pressure is independent

of radial coordinate as shown in Eq. (4).

In the present problem, thermoacoustic oscillation is

introduced by a pressure generator, which has a small

oscillatory amplitude and its Mach number is much

smaller than unity as indicated in Eq. (1c). We now

expand the transient physical quantities into a perturba-

tion series in terms of the small parameter M, the Mach

number. For example, the normalized axial velocity,

normalized pressure and normalized temperature can

be expressed as:
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where i is a unit complex quantity. The superscript ‘‘*’’

indicates complex conjugate and the subscripts ‘‘1’’ and

‘‘2’’ stand for the first-order term and second-order

term, respectively. In Eq. (8), conjugate terms e�it and

e�2it are included so that both sides of the equations

are real numbers. The Fourier expansion series in the

form of Eq. (8) can always be carried out if the quanti-

ties are cycle-repeatable and mathematically continuous

functions with respect to time. In Eq. (8a), u20 is cycle-

averaged normalized axial velocity. Eq. (8b) is indepen-
dent of r because of the long tube assumption given by

Eq. (4b). In addition, p20 in Eq. (8b) is the percentage

deviation of cycle-averaged local pressure with respect

to p0. u20 and p20 are of second-order in amplitude

because they are caused by the fluctuations of the first-

order quantities. Note that T20 = 0 in Eq. (8c) because

we have assumed that the thermoacoustic oscillation oc-

curs in a tube whose outer surface is isothermal due to

efficient heat exchange with surroundings. Thus, the

present problem is different from that of thermoacoustic

oscillation in an adiabatic tube where the oscillation will

eventually build up a cycle-steady state temperature gra-

dient [15–17].

We now substitute Eq. (8) into the governing equa-

tions given by Eq. (2)–(7), and collect first-order terms.

Note that we can collect separately the coefficients of

eit and e�it because these quantities vary with respect

to time independently. It is noted that the coefficient

equations of eit and e�it are complex conjugate of each

other. For this reason, we need only to work with one

set of equations. The resultant normalized first-order

governing equations for thermoacoustic oscillation in

an axisymmetric tube are given below:
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with radial boundary conditions given by:
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The characteristic dimensionless quantities in Eqs. (9)–

(13) are defined as: dv = (2l0/xq0)
1/2 is the fluid�s viscous

penetration depth; dt = (2k0/xq0Cp,0)
1/2 is the fluid�s

thermal penetration depth; ds = (2ks,0/xqs,0Cp,s,0)
1/2 is

the solid�s thermal penetration depth; and D = Ro/Ri is

a geometrical parameter of the tube. Boundary condi-

tions given by Eq. (15c) and (15d) are the matching con-

ditions at the fluid-solid interface while Eq. (16) is for an

isothermal outer wall.
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3. Radial distributions of the first-order quantities

Radial distribution of the normalized first-order

physical quantities governing by Eqs. (9)–(16) can be

determined analytically. The radial solutions for these

normalized first-order quantities are:
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In the above equations, the variable g = g0r with

g0 = (i � 1)Ri/dv being the dimensionless radial coordi-

nate. Jj(g) is the Bessel function of the first kind of order

j and Yj(g) is the Bessel function of the second kind of

order j. r = Pr1/2 = (l0Cp,0/k0)
1/2 = dv/dt is the square

root of Prandtl number, which is the ratio of the fluid�s
viscous penetration depth to thermal penetration depth;

rs = dv/ds is the ratio of the fluid�s viscous penetration

depth to the solid�s thermal penetration depth;

e ¼ ks;0dt
k0ds

¼ _qdt=k0
_qds=ks;0

� Hf

Hs
is a parameter denoting the ratio

of temperature difference across the fluid�s penetration

depth to that of the solid�s penetration depth. One

should note that the solution of temperature given in

Eq. (18) is somewhat different from that of Rott�s [7]

or Merkli and Thomann�s [8] because different thermal

boundary conditions were used. Consequently, axial

distributions of the first-order quantities, which will be

given in the following section, are also different from

that given by Merkli and Thomann�s [8]. Eqs. (17)–

(19) with different scaling parameters were also derived

independently by Swift [18].
4. Axial distributions of the cross-sectional averaged

first-order quantities

We now define the cross-section area average quanti-

ties as X ¼ 1
A0

R
A0

XdA with A0 being the cross-section

area. Substituting the first-order velocity given by Eq.

(17) into the above expression, we obtain the following

first-order cross-sectional averaged velocity:
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In addition, we can integrate the continuity equation

given by Eq. (9) over the cross-sectional area and take

note of the radial boundary conditions to give
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Differentiating Eq. (23) with respect to x and substitut-

ing the cross-sectional averaged velocity given by Eq.

(21) in the resulting equation to eliminate the p1 term,

we can obtain an axial governing equation for �u1:

o
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Since one end of the tube is closed while the other end is

connected to a driving pressure wave generator, as

shown in Fig. 1, axial boundary conditions for Eq.

(24) are given by:

x ¼ 0 : �u1ðxÞ ¼ 1 and x ¼ 1 : �u1ðxÞ ¼ 0 ð26a; bÞ

where we have chosen original point of time coordinate

so that the phase angle of the oscillation of the velocity is

zero at the driven end (x = 0). Consequently:

�u1ðxÞ ¼
ecx � e2c�cx

1� e2c
ð27Þ

Eq. (27) gives a complex number where its modulus

gives the fluctuation amplitude and its phase angle indi-

cating the phase shift of the fluctuation with respect to a

reference wave (which is defined as the velocity wave at

the driven end). In addition, the normalized first-order

pressure can be obtained as:

p1ðxÞ ¼
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It should be noted that mathematical singular points

appear in both Eqs. (27) and (28) when the coefficient

c approaches the limit of inp with n being a positive inte-

ger. In such a case, the denominators in Eqs. (27) and

(28) approach to zero values. Consequently, velocity

and pressure approach to infinite values. Physically, res-

onant oscillation will occur when this singular point is

approached by increasing the oscillatory frequency,

and a shock wave may arise as a result. Consider the
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limiting case of Ri/dv !1 (i.e., a tube with a large ra-

dius in comparison with the viscous penetration depth)

hence g0 = (i � 1)Ri/dv !1. From Eq. (25), we can

obtain c = ±xLi/a for such a tube. Abandoning the neg-

ative value of c as being physically unrealistic, we have

the expression for this singular point in Eq. (27) or

Eq. (28) as xL/a = np. It follows that x = pa/L is the

intrinsic resonant angular frequency in a large diameter

tube with a length of L.

Numerical calculations for Eqs. (27) and (28) were

carried out for the nearly resonant condition of xL/

a = 0.95p under the following conditions: the solid phase

is stainless steel, D = 1.05, Ri/dv = 50, T0 = 300 K,

p0 = 1 MPa. The working fluid may either be the helium

gas (with Pr = 0.667, c = 1.667, e = 206.570, rs = 1.724)

or the nitrogen gas (with Pr = 0.714, c = 1.4,

e = 425.850, rs = 0.618). The results of the computations

are presented in Figs. 2–5.

Fig. 2 gives the axial distribution of fluctuation

amplitude of first-order pressure along the tube where

it is shown that the minimum value of p1 occurs near

the center of the tube when oscillation frequency is at

nearly resonant condition. Fig. 3 gives the phase angles

of first-order pressure along the axial position which has

a sudden drop near the center of the tube. Figs. 4 and 5

give the axial distribution of fluctuation amplitude of

first-order velocity and its phase angle along the axial
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velocity.
location. Fig. 4 shows that the fluctuation amplitude

of the first-order velocity reaches a maximum value near

the axial center of the tube when oscillation frequency is

at a nearly resonant condition. Fig. 5 shows the phase

angle of velocity at any axial location lagging behind

the induced velocity at the driven end of the tube. Com-

paring with the phase angles of the pressure and of the

velocity shown in Figs. 3 and 5, one can conclude that

oscillations of both helium gas and nitrogen gas are

slightly different from the standing wave pattern since

the phase shift between the velocity and the pressure

are not equal to 90� exactly. For the same reduced fre-

quency xL/a and reduced geometrical size Ri/dv, it is

shown in Figs. 2 and 4 that the helium gas has larger

fluctuation amplitudes of the pressure and the velocity

compared with those of the nitrogen gas. This is because

the helium gas has a smaller Prandtl number [8].
5. Thermoacoustic mass streaming and axial velocity u20

Integrating Eq. (2) over a cycle, the first term of Eq.

(2) will vanish since cycle-averaged density should be a

constant and fluctuation of the density will be cycle-

repeatable at a cycle-steady state. Further cross-sec-

tional averaging of Eq. (2), with the radial velocity being

zero at the wall taken into consideration, gives
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where braces denote cycle average and the overbar indi-

cates cross-sectional average. Eq. (29b) is obtained from

Eq. (29a) by imposing the mass flow rate is zero at the

closed end of the tube. In fact, Eq. (29b) shows that

the net mass flux is zero everywhere in the tube.

Substituting the perturbation series of the density

and axial velocity in Eq. (29b) and collecting the sec-

ond-order terms while neglecting higher-order terms
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where R signifies the real part of a complex number. The

last term in Eq. (29d) is due to the fluctuations of the

density and velocity, which is called the thermoacoustic

mass streaming. Eq. (29d) indicates that there is a non-

vanishing cycle-averaged and cross-sectional averaged

axial velocity �u20 which is caused by the thermoacoustic

mass streaming. From Eq. (29d), we also can conclude

that �u20 ¼ 0 for an incompressible oscillating flow where

the fluctuation of the density q1 = 0.

Substituting Eqs. (17) and (19) in Eq. (29d) gives:
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The normalized �u20 given by Eq. (30) was computed for

the helium gas and the results are presented in Fig. 6. It

is shown that the value of �u20 is zero at the closed end (at

x = 1) and has a negative value elsewhere. It is worthy of
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noting that �u20 is the cycle averaged and cross-sectional

averaged axial velocity at the cycle-steady state, which is

different from the concept of secondary flow and the DC

flow.
6. Thermoacoustic momentum streaming and

cycle-averaged pressure

Rewriting the axial momentum equation of Eq. (3) in

a conservation form, we have:
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If we perform a cycle average and cross-sectional aver-

age of the above equation, taking into consideration of

the boundary condition that velocity being zero at the

wall, we obtain:
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þ d2
v

R2
i

ou
or

� �
r¼1


 �
ð33Þ

Eq. (33) gives a constraining condition for the cycle bal-

ance of the momentum transfer at a cycle-steady state,

where hqu2i is the thermoacoustic momentum streaming

which is due to the fluctuation of the momentum and

has a non-vanishing cycle effect. Note that the second

term of Eq. (33) denotes the cycle-averaged pressure gra-

dient and the last term signifies the friction force due to

the viscous effect.

The friction force is confined within the viscous

penetration depth. If the radius of tube is much larger

than the viscous penetration depth, this viscous term

in Eq. (33) can be neglected. Consequently, the local

cycle-averaged pressure and local thermoacoustic

momentum streaming have a conservation relationship
1
c hpi þ hqu2i ¼ constant. This conservation relation has

a form similar to the Bernoulli equation for a steady

inviscous flow. Substituting the perturbation series of

physical quantities in this conservation relation, after

some mathematically manipulations, we have:

p20ðxÞ ¼
Z 1

0

1

2c
a

xL

� �2 dp1
dx

����
����
2

f2

" #
dx

� 1

2c
a

xL

� �2 dp1
dx

����
����
2

f2 ð34Þ

where

f2 ¼ 1� J 0ðgÞ
J 0ðg0Þ

����
����
2

ð35Þ

where the operator jÆj stands for the modulus of a com-

plex number which indicates the fluctuation amplitude



G.Q. Lu, P. Cheng / International Journal of Heat and Mass Transfer 48 (2005) 1599–1607 1605
of a physical quantity. The non-vanishing cycle-aver-

aged and cross-sectional averaged pressure gradient in

a pulse tube refrigerator has been verified by experimen-

tal and numerical results [19,20].
7. Thermoacoustic energy streaming and local heat

transfer rate

Writing the energy equation (5) in a conservation

form and neglecting the thermal dissipation terms due

to the viscous work, we have:

oðqT Þ
ot

þ a
xL

oðquT Þ
ox

þ 1

r
oðrqvT Þ

or

� �

¼ c � 1

c
op
ot

þ a
xL

u
op
ox

� �
þ 1

xCpq0R
2
i

1

r
o

or
kr

oT
or

� �

þ R2
i

L2

1

xCpq0R
2
i

o

ox
k
oT
ox

� �� �
ð36Þ

Next we perform a cycle-averaging and cross-sectional

averaging of energy equations for the fluid given by

Eq. (36) and for the wall given by Eq. (6). Adding the

two resultant equations together leads to the following

cycle balanced energy equation:

a
xL

ohquT i
ox

¼ c � 1

c
a

xL
�u
op
ox


 �

þ 2D

xCpq0R
2
i

ks
oT s

or

� �
r¼D


 �
ð37Þ

The first term at the right-hand side of Eq. (37) stands

for the variation of the kinetic energy during a cycle,

which was neglected in the classical thermoacoustic

theory.

The last term in Eq. (37) signifies the heat transfer be-

tween the outer wall of the tube and its surrounding

environment. The local dimensionless heat transfer rate

at the outer wall is given by:

q � � L
a

c
c � 1

2D

Cpq0R
2
i

ks
oT s

or

� �
r¼D


 �

¼ � c
c � 1

ohquT i
ox

þ �u
op
ox


 �
ð38Þ

where heat is transferred from the fluid if q is positive,

and is absorbed by the fluid if q is negative. The expres-

sion of the energy streaming hquT i in Eq. (38) has been

given by Merkli and Thomann [8] as well as by Rott [6].

A simpler expression for hquT i can be deduced as fol-

lows. By substituting the normalized state equation for

an ideal gas p = qT, we have hquT i ¼ hp�ui, where p is

independent of radial location due to long tube assump-

tion. This expression of the energy streaming can be ap-

plied to any oscillation flow as long as the working fluid

is an ideal gas.
Substituting the perturbation series of the pressure

and velocity in Eq. (38) and collecting the second-order

terms while neglecting higher-order terms lead to:

Q � q

M2
¼ Qa þ Qb þ Qc ð39Þ

where

Qa ¼ � c
c � 1

o�u20
ox

Qb ¼ � c
2ðc � 1Þ

o

ox
Rhp1u	1i
h i

¼ � 1

2ðc � 1Þ
a

xL
R f3p	1

d2p1
dx2

þ f3
dp1
dx

����
����
2

" #

Qc ¼
1

2
R �u1

dp	1
dx


 �� �
¼ 1

2c
a

xL
dp1
dx

����
����
2

R½f3�

ð40a–cÞ

with the coefficient f3 given by:

f3 ¼ i� 2i

g0

J 1ðg0Þ
J 0ðg0Þ

ð41Þ

Eq. (39) indicates that the normalized local heat transfer

rate q consists of three terms: Qa is the local heat flux

caused by non-vanishing cycle-averaged axial velocity;

Qb is the local acoustic work due to the oscillation of

the first-order pressure and axial velocity; and Qc is

the local work due to the pressure gradient which signi-

fies the variation of the kinetic energy during an oscilla-

tory cycle. Note that the sum of Qa and Qb is caused by

the axial gradient of the thermoacoustic energy stream-

ing, and we may refer the sum of these two terms as

the local energy streaming. Note also that Qa = 0 for

an incompressible flow for which �u20 ¼ 0.

Fig. 7 gives the axial distributions of Q, Qa, Qb and

Qc for a helium gas. It is shown that Qa has a negative

value at most of axial locations. As discussed in the fore-

going paragraphs, there is a non-vanishing �u20 caused by

the mass streaming. Physically, the term Qa stands for

the energy needed to drive the axial gradient of this

non-vanishing velocity. The distribution of the local

acoustic work Qb is also given in Fig. 7. It is easy to

understand that this local acoustic work is positive since

the input of mechanical work is needed in order to main-

tain the thermoacoustic oscillation. This local acoustic

work will dissipate into heat during the oscillation cycle.

In addition, the local work due to the variation of the

kinetic energy Qc is also presented in Fig. 7. Note that

Qc < 0 along the axial direction, which signifies the loss

of the kinetic energy during a cycle due to the friction ef-

fect. This local kinetic energy loss Qc has to be compen-

sated by the input of acoustic work or heat. The total

local heat transfer rate Q, consisting of local heat flux

Qa, thermal energy dissipated by local inputted acoustic

work Qb, and local kinetic energy loss Qc, is also pre-

sented in Fig. 7.
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Near two ends of the tube, the energy Qa needed to

drive the cycle-averaged velocity gradient and the kinetic

energy loss Qc are small, whereas the dissipated heat by

the local acoustic work is larger than the energy needed

to compensate for Qa and Qc. Consequently, the rest of

the energy has to be discarded in the form of heat in this

part of the tube, which is the reason why the total local

heat transfer rate is positive near the two ends of the

tube as shown in Fig. 7. However, near the center of

the tube, the energy needed to drive the cycle-averaged

velocity gradient is very large, and the dissipated heat

Qb is not large enough to offset Qa and Qc. Conse-

quently, this deficient energy has to be compensated by

the local radial heat transfer between the fluid and the

wall by absorbing the heat from the wall, or ultimately

absorbing the heat from the surrounding environment

if the outer wall is at isothermal condition. This is why

the total local heat capacity Q is negative near the center

of the tube as shown in Fig. 7 and why there is a refrig-

eration capability for the oscillating flow in such a tube.

From the above analyses, we can conclude that the

local heat flux Qa is a very important term. As we have

discussed, the local thermoacoustic energy streaming is

contributed by local heat flux Qa and local acoustic

work Qb. Since the local acoustic work Qb is positive

due to the work input in order to maintain the thermo-

acoustic fluctuation, hence the local thermoacoustic en-

ergy streaming is essentially caused by the local heat flux

Qa, which is the energy required to drive the cycle-aver-

aged axial velocity gradient. On the other hand, as we

have discussed, the cycle-averaged velocity is induced

by the thermoacoustic mass streaming in order to guar-

antee mass conservation at a cycle-steady state in a ther-
moacoustic machine. Therefore, the thermoacoustic

mass streaming and energy streaming are intimately

connected.
8. Conclusions

In this paper, oscillations of a viscous compressible

fluid at cycle steady state in a tube, with an outer iso-

thermal wall and with one end closed and the other

end driven by a piston, are analyzed based on a linear-

ized theory. By assuming that the tube is sufficiently

long, and the oscillations of the fluid are at a nearly

resonant condition with small fluctuation amplitudes,

analytical solutions of the first-order quantities are

obtained.

(1) From the consideration of global mass conservation

at a cycle-steady state, an analytical solution is

obtained for the cycle-averaged and cross-sectional

averaged axial velocity. It is shown that this average

velocity is non-vanishing for a compressible flow

due to the mass streaming although the net mass

flux being zero everywhere during the cycle-steady

state.

(2) It is shown that the cycle-averaged pressure depends

on the momentum streaming and friction force. In a

tube with a relatively large radius (in comparison

with the viscous penetration depth), a conservation

relationship between the cycle-averaged pressure

and the thermoacoustic momentum streaming is

revealed, which is similar in form to the Bernoulli

equation in a steady inviscid flow.

(3) Based on the global energy conservation, the total

local heat transfer rate is shown to be consisting

of local heat flux, local acoustic work and the local

work due to the variation of the kinetic energy.

(4) It is shown that the refrigeration effect is mainly

caused by the non-vanishing mean velocity as a

result of the mass streaming. Therefore, the mass

streaming and the energy streaming in a compress-

ible oscillating flow are intimately connected.
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